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ABSTRACT

This paper provides a numerical assessment of the ductile fracture of the AA6101 and AISI 4340 alloys 
using the Lemaitre and Gurson models.The simulations were carried out to verify the evolution of the 
accumulated plastic strain at fracture, assuming the high range of the triaxiality ratio, applying monotonic 
tensile loads on smooth and notched cylindrical specimens. The numerical strategy was structured for 
the Lemaitre and Gurson models, from establishing a non-linear system of equations using an implicit 
integration algorithm and solving the non-linear equation system using the Newton-Raphson method. 
When assessing the numerical and experimental results, it was observed that the cumulative plastic strain 
at the fracture decreases with the increasing levels of the triaxiality ratio for both alloys and models.
On the one hand, the Lemaitre model was more optimistic than the experimental results. On the other 
hand, Gurson’s model proved to be more conservative in its prediction of ductile fracture. Regarding 
determining the fracture onset, in general, both models showed good predictive capacity. However, the 
numerical results for the aluminum alloy presented more in agreement with experimental data than for 
the AISI 4340 alloy. In the end, assuming the determination of the level of displacement at fracture, the 
Gurson’s model has the best performance. In this sense, for a high level of triaxiality ratio, the Gurson 
porous material can be recommended to describe the mechanical behavior of the material at fracture.

Keywords: Ductile fracture, mechanical damage, stress triaxiality.

RESUMEN

En este trabajo se evalúa numéricamente la fractura dúctil de las aleaciones AA6101 y AISI 4340, 
utilizando los modelos Lemaitre y Gurson. Las simulaciones se realizaron para verificar la evolución de 
la deformación plástica acumulada en la fractura considerando el rango de alta relación de triaxialidad, 
aplicándose cargas de tracción monotónicas en probetas cilíndricas lisas y con entalladuras. La estrategia 
numérica se estructuró para los modelos de Lemaitre y Gurson, a partir del establecimiento de un sistema 
no lineal de ecuaciones, utilizando un algoritmo de integración implícita. El método de Newton-Raphson 
es utilizado para la solución del sistema de ecuaciones no lineal. Comparando los resultados numéricos 
y experimentales, se observó que la deformación plástica equivalente en la fractura disminuye con el
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INTRODUCTION

Using lighter and more reliable metallic materials in 
different engineering areas has become necessary in 
recent decades. Consequently, the search for solutions 
that tend to optimize mechanical components is 
intrinsically related to the structuring of constitutive 
models capable of describing, with a certain precision, 
the moment, region, and exact location of the onset 
of ductile fracture of the constituent materials. The 
search for solutions implies that the need to design 
devices or components with knowledge of the state 
of maximum stress or maximum level of degradation 
must be identified for a correct design and desired 
operational safety. This paper considers two alloys 
with different ductility levels, which are widely used 
in numerous areas of engineering. Due to its low 
ductility, the AA6101-T4 aluminum alloy tends to 
fracture already in the forming process. Studies related 
to the fracture of this material have become relevant 
for applications in the design of lighter structures 
and mechanical components [1]. Furthermore, the 
annealed AISI 4340 alloy is considered a high-strength 
material, widely used in the offshore industry. It 
presents high ductility levels, a characteristic that 
makes the description of the mechanical behavior 
of this material highly relevant [2].

In this sense, analyzes regarding the mechanical 
behavior of materials have been carried out since 
the last century and date back to the studies by von 
Mises [3]. With the work of Kachanov [4], Damage 
Mechanics emerged, which studies the behavior 
of materials, admitting that they have damage or 
defects in their microstructure. When subjected to 
efforts exceeding their elastic limit, they will result in 
permanent deformations, also called plastic strains. 
In general, Damage Mechanics has as its primary 
objective to study and develop mathematical models 

that can predict the useful life of a given material or 
component [5]. However, it can be analyzed under 
two different approaches:

i. One based on the continuous damage mechanics, 
where the Lemaitre model [5] is the main 
representative. In this approach, the damage 
depends on the accumulated plastic strain, and 
the evolution law is based on the thermodynamics 
of solids. Then, the so-called critical damage 
criterion is assumed, and a crack in the 
mesoscopic scale starts when the damage value 
reaches a critical level. In this sense, several 
models have been proposed [6-19];

ii. The second one is based on micromechanics 
of defects, where Gurson’s model is the main 
contribution [20]. The approach assumes the 
material’s porosity as the damage variable and 
is one of the most important reference in the 
area. Later, other formulations were published 
to improve the original proposal.

The previous aspects impose some limitations to 
the model Several criteria were incorporated into 
new proposals, among the most significant one can 
mention: incorporation of triaxiality effects, the 
evolution of defects in ductile materials, porosity, 
and applications under cyclic conditions [21-39]. In 
general, the phenomenon of gradual defect growth 
is an important alternative to predict the life of 
structural components subjected to low-cycle fatigue.

Given the importance of Lemaitre’s approaches [5] 
and Gurson’s [20] models, this contribution proposes 
to numerically study its predictive capacity regarding 
the determination of the level of displacement at 
fracture and the fracture onset. For this, two materials, 
such as aluminum AA6101-T4 and annealed AISI 
4340 alloys, are used to manufacture cylindrical 
specimens in a high of triaxiality ratio level.

aumento del nivel de la relación de triaxialidad para las aleaciones cuando aplicados los modelos, 
siendo el modelo de Lemaitre más optimista en comparación con los resultados experimentales. El 
modelo de Gurson demostró ser más conservador en su predicción de fractura dúctil. En cuanto a la 
determinación de la ubicación del inicio de la falla en la probeta, ambos modelos mostraron buena 
capacidad predictiva, y el mejor desempeño ocurrió para la aleación de aluminio, que tiene un mayor 
nivel de ductilidad. Para la aleación AISI 4340, el modelo Lemaitre mostró diferencias significativas 
con respecto al desplazamiento de la fractura en comparación con el modelo Gurson. Por tanto, se 
recomienda el modelo de Gurson, preferentemente, en materiales con mayores niveles de ductilidad.

Palabras clave: Fractura dúctil, mecánica de daño, estado tensional triaxial.
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Mathematical Modeling and Numerical Strategy
This section presents the mathematical formulations 
for Lemaitre’s and Gurson’s models and their 
corresponding numerical strategies for integrating the 
flow equations and obtaining the return algorithms. 
Both damage models are built based on an isotropic 
damage variable, considering isotropic hardening 
for the studied alloys.

Lemaitre’s Model
The mathematical structuring of the constitutive 
models, and the description of the variables involved 
in the study, are of fundamental importance for 
understanding the research approach. Initially, the 
mathematical aspects of the model based on the 
Continuous Damage Mechanics proposed by Lemaitre 
are presented [5], and later the mathematical aspects 
of the elastoplastic model published by Gao [40].

In the construction of the Lemaitre damage 
mathematical model [5], there is a need to define 
the effective stress according to equation (1).

σ ef =
σ
1−D (1)

where, σef is the effective stress of Lemaitre [5], σ 
is the Cauchy stress tensor and D is the isotropic 
damage variable. Thus, substituting equation (1) in 
the generalized Hooke’s Law, the modified Hooke’s 
Law (equation 2) is obtained.

σ ef =D
e :ε e (2)

The expression above (equation 3) can be written 
as follows:

σ = 1−D( )De :ε e, (3)

Where, De is the elasticity material tensor and εe is the 
elastic strain tensor. The yield function (equation 4) 
for the Lemaitre model [5] can be written as:

φ =
3J2 S( )
1−D

−σ y0 −H
I ε p( )ε p , (4)

Where the term J2(S) is the second invariant of the 
deviatoric stress tensor, σy0 represents the initial yield 

stress of the material, ε p  represents the accumulated 
plastic strain, and HI is the isotropic hardening 
modulus, which is a function of the accumulated 
plastic strain, being represented by H I ε p( ).
The flow vector (see equation 5), calculated based 
on the associative plasticity can be written as:

N =
∂φ
∂σ

=
3

2 1−D( )
S
q
, (5)

Where N represents the flow vector and q is the 
von Mises equivalent stress. Thus, the plastic flow 
(equation 6) rule is then determined:

!ε p ≡ !γN = !γ
3

2 1−D( )
S
q
, (6)

Where !ε p  represents the plastic strain rate tensor 
and !γ  is the so-called plastic multiplier rate. The 
rate of evolution of the accumulated plastic strain, 
which assumes the role of an internal variable of 
isotropic hardening, is calculated according to the 
Prandt-Reuss, equation (7).

!ε p =
2
3
!ε p : !ε p = !γ

1−D
, (7)

Where !ε p  represents the rate of evolution of the 
accumulated plastic strain. The law of evolution 
of the damage variable is given by equation (8).

!D =
!γ

1−D
−Y
S

⎛

⎝
⎜

⎞

⎠
⎟
S

, (8)

Where !D  is the rate of evolution of the isotropic 
damage variable, Y represents the energy released 
due to the damage, S is the damage denominator, and 
s is the damage exponent. Terms (S, s) are material 
parameters and need to be calibrated. Thus, Y can 
be mathematically calculated by equation (9).

Y = −q2

6G 1−D( )2
−

p2

2K 1−D( )2
, (9)

Where p is the hydrostatic pressure, G and K 
represent, respectively, the shear and bulk modulus. 
Thus, Figure 1 contains the mathematical equations 
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that define the Lemaitre model [5] with isotropic 
hardening and isotropic damage.

Return map algorithm for the Lemaitre model
Lemaitre’s model [5] is integrated through an 
implicit Euler strategy [41], where the operator split 
methodology is used, assuming that the problem 
can be split into two parts: a) trial state, in which 
the prescribed strain increment is considered 
entirely elastic, and b) plastic corrector, in which 
the hypothesis of full elastic strain increment is not 
valid. Moreover, in the plastic corrector, a system of 
non-linear equations is solved, using the Newton-
Raphson method. The model is then added to an 
academic finite element tool called Hyplas, using 
the large strain transformation algorithm proposed 

by De Sousa Neto [42]. The system of nonlinear 
equations to be solved is:

where, Rσ n+1
, RDn+1  and RΔγ  are residual equation, 

defined by the evolution law of the internal variables. 
The solution of the nonlinear system of equations 
shown in equation  (10) is performed using the 
Newton-Raphson method, presented in Figure 2.

Gurson’s mathematical model
Gurson’s model [20] is based on the micromechanics 
of defects, where the porosity is taken as the 
damage variable. The yield function by Gurson is 
a function of the second invariant of the deviatoric 
stress tensor, porosity, hydrostatic stress, and 
hardening curve. Besides that, the evolution of 

Figure 1. Lemaitre model with isotropic hardening.

Rσ n+1
=σ n+1 − 1−Dn+1( )De :εn+1

e trial +ΔγDe :Nn+1

RDn+1
= Dn+1 −Dn −

Δγ
1−Dn+1

−Yn+1
S

⎛

⎝
⎜

⎞

⎠
⎟

RΔγ =

3
2
Sn+1 :Sn+1

1−Dn+1
−σ y0 −H

I εn
p( )εnp −H I Δγ

1−Dn+1

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

(10)
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the porosity is a function of the volumetric part 
of the plastic strain tensor, which represents the 
growth of the defect mechanisms. Among them, 
the Gurson model stands out [20], and other 
phenomenological extensions are proposed in the 
literature [21, 43, 44, 45]. For the construction of 
Gurson’s mathematical model [20], Hooke’s Law 
in its original and generalized form is considered 
( see equation 11).

σ = De :ε e, (11)

Where  is the Cauchy stress tensor, De is the 
elasticity material tensor, and εe is the elastic strain 
tensor. The yield function for the Gurson model is 
defined according to equation 12:

φ = J2 S( )− 1
3

1+ f 2 − 2 f  cosh 3p
2σ y

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
σ y

2
(12)

Where the term J2 (S) is the second invariant 
of the deviatoric stress tensor,  represents the 
material’s yield stress or hardening rule, p is the 
hydrostatic pressure, and f is the volume void 
fraction or porosity.

The flow vector, calculated based on the associative 
plasticity can be written as shown in equation 13:

N = Nd +
1
3
NvI = S+

1
3
fσ y sinh

3p
2σ y

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ I (13)

Nd and Nv are the deviatoric and volumetric 
contributions of the flow vector, S is the deviatoric 
stress tensor, and I is the second-order identity tensor. 
Thus, the plastic flow rule is then determined by 
equation 14:

!ε p = !εd
p +

1
3
!εv
pI = !γ fS+ 1

3
!γ  σ y sinh 3p

2σ y

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ I (14)

where !εd
p  and !εv

p
 represent the deviatoric and 

volumetric parts of the plastic strain rate tensor, 
respectively, the rate of accumulated plastic strain, 
which assumes the role of an internal variable of 
isotropic hardening, is also calculated according 
to the Prandt-Reuss equation (see equation 15).

!ε p = !γ
2
3
S :S+ 1

3
fσ y sinh

3p
2σ y

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪
(15)

Where !ε p  is the rate of accumulated plastic strain. 
The evolution law of porosity or void volume 
fraction, according to Gurson [20], is defined in 
equation 16:

Figure 2. Newton-Raphson method for the nonlinear Lemaitre system.
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Figure 3. Gurson’s mathematical model.

Rσ n+1
+σ n+1 −σ n+1

trial + 2GΔγNd  n+1+ΔγK
1
3
Nv  n+1I

R
εn+1
p = εn+1

p −εn
p −Δγ

2
3

Sn+1 :Sn+1+
1
3
fn +σ y sinh 3pn+1

2σ y

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎧

⎨
⎪

⎩⎪

Rfn+1 = fn+1 − fn −Δγ 1− fn+1( ) fn+1σ y sinh 3pn+1
2σ y

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

RΔγ = J2n+1 −
1
3

1+ fn+1
     2 − 2 fn+1 cosh 3pn+1

2σ y

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
σ y

  2

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

(17)

!f = 1− f( ) !εvp = !γ 1− f( ) fσ y sinh
3p
2σ y

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ (16)

Figure 3 contains all the mathematical equations that 
define the Gurson model [20] with isotropic hardening.

Return algorithm for the Gurson model
In the construction of the return algorithm, the 
following system of non-linear equations must be 
solved (equation 17), having as variables:

σ n+1,εn+1
p , fn+1,  and Δγ

Where, Rσ n+1
,  R

εn+1
p ,  Rfn+1

 and RΔγ are residual 
equations based on the evolution equations of the 

internal variables. In solving the non-linear system of 
equations, the Newton-Raphson method is applied; 
Figure 4 presents the Newton-Raphson strategy.

METHODOLOGY OF TESTS

In this part, it is presented the methodology of 
the experimental tests and the description of the 
specimens in the high level of triaxiality ratio.

Material description
AISI 4340 and AA6101-T4 alloy test specimens 
were manufactured to evaluate the Gurson and 
Lemaitre models in a high triaxiality ratio, considering 
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smooth and notched cylindrical bars. A total of 7 
specimens were manufactured: 4 for annealed AISI 
4340 alloy and 3 for AA6101-T4 alloy. For the 
AA6101-T4 alloy, the experimental data were taken 
from Malcher [46], assuming a smooth cylindrical 
specimen and two notched cylindrical specimens 
with a notch radius of 6 and 10 mm. Besides that, 
for the AISI 4340 alloy, the experimental data 
were taken from Morales [2], assuming a smooth 
cylindrical specimen and three cylindrical notched 
specimens with a notch radii of 4, 6, and 10 mm. 
All specimens were submitted to a tensile test under 
strain control with a strain gauge of 25 mm of length 
gauge. The tests were performed regarding an MTS 
810 of 100 kN of maximum force.

Geometry of specimens
The triaxiality ratio is conceptually defined as the ratio 
between the hydrostatic pressure, p, and the equivalent 
von Mises stress, q, represented in equation (18).

η =
p
q (18)

Bridgman [45], related the triaxiality ratio η, with the 
constructive parameters used to make the specimens: 

Figure 4. Return algorithm (Newton-Raphson) for the Gurson model.

notch radius R, and radius of the central section of 
the specimen 𝑎, according to equation (19).

η =
1
3
+ ln 1+ a

2R
⎛

⎝
⎜

⎞

⎠
⎟ (19)

Based on Bridgman’s equation  [45], cylindrical 
specimens were prepared, designed to allow an 
initial triaxiality ratio in the critical region of 
0.33(smooth), 0.50, 0.60, and 0.70 (notched), 
with a cylindrical of the entire cross-section. The 
smooth and notched cylindrical specimens were 
machined with a total length of 128 mm and 120 
mm, respectively, and a useful length of 40 mm. In 
Figure 5, the representation of the critical region of 
the cylindrical specimens is schematically shown.

In Figure  6. The technical drawings of the 
manufactured test specimens are shown.

NUMERICAL AND EXPERIMENTAL 
RESULTS

This section shows the numerical and experimental 
results for the specimens manufactured for the 
two studied alloys. Initially, the characteristics 
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Figure 5. Geometric representation of the critical region of 
the cylindrical specimen.

Figure 6. Geometrical characteristics of specimens.

of the discretization of the geometries and the 
corresponding calibration to obtain the parameters 
of each material are presented. The force reaction 
curves are shown, with a comparison between the 
experimental and numerical values, contrasted with 
the damage evolution. Finally, the evolution of the 
accumulated plastic strain is also described.

DISCRETIZATION AND CALIBRATION 
OF MATERIAL PARAMETERS

The finite element meshes were defined from 
axisymmetric modeling and structured with 

quadrilateral elements of eight nodes using reduced 
integration. Figure 7 shows the finite element meshes 
used in the numerical simulations, each mesh formed 
by 2146 nodes and 675 elements, with refinement 
in the central part to allow greater discretization of 
the results in this region of interest.

For both materials, the smooth cylindrical 
specimens, under tensile load, resulting in the 
experimental reaction and optimized curve, 
through the multivariable search method based on 
the gradient proposed by Machado and Malcher 
[46] and Machado [47], for calibration of material 
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properties. In this case, the Kleinermann and 
Ponthot [48] curve parameters were also calibrated, 
equation (20), used to represent the behavior of the 
isotropic hardening curve of materials through four 
parameters: σy0, σ∞, ξ, δ.

σ y =σ y0 +ξε
p + σ∞ −σ y0( ) 1− e−δε

p( ) (20)

Figure 8 and Figure 9 show the graphic result of 
the parametric identification process, where it can 
be seen that the numerically calculated reaction 
force versus displacement curve approximates the 
experimentally determined curve.

Table 1 also shows that according to Lemaitre 
[5], the critical damage is 0.42 and 0.20 for the 
annealed AA6101-T4 and AISI 4340 alloys. The 
critical porosity For the Gurson model [20] is 0.34 
and 0.22 respectively for the annealed AA6101-T4 
and AISI 4340 alloys.

Figure 10 shows the hardening curves determined 
according to Lemaitre [5] and Gurson [20] 
models. A difference between the curves is 
observed based on the nature of the damage 
evolution equations proposed by both models. 
For Lemaitre [5], the damage is a function of the 
accumulated plastic deformation and the energy 

Figure 7. Finite element meshes for cylindrical specimens.

Figure 8. Numerical and experimental force versus displacement curves 
obtained by Lemaitre and Gurson models. a) smooth specimens 
AISI 4340 alloy. b) smooth specimens AA6101-T4 alloy.
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Figure 9. Evolution of damage variable versus displacement obtaioned by 
Lemaitre and Gurson model until the fracture a) smooth specimens 
AISI 4340 alloy. b) smooth specimens AA6101-T4 alloy.

Table 1. Elastoplastic and damage parameters - AA6101-T4 and AISI 4340 annealed.

Description Symbol AA6101-T4 AISI 4340 R Unit

Modulus of elasticity E
65.554 206.000 MPa

Lemaitre Gurson Lemaitre Gurson

Initial flow limit σy0 94.80 96.50 448.75 471.33 MPa

Kleinermann and Ponthot equation parameters
ξ 118.76 83.75 568.21 514.74 MPa
σ∞ 206.65 216.93 746.92 780.22 MPa
δ 14.0 13.13 28.85 27.14 –

Accumulated plastic strain in fracture ε f
p

2.40 2.28 1.44 1.57 –

damage exponent s 1.0 1.0

damage denominator S 4.85 25.02 MPa
critical damage Dc 0.42 0.20 –

initial porosity f0 0.01076 0.02705 –

critical porosity fc 0.34 0.22 –

released from the damage. For Gurson [20], the 
damage is associated with the ratio between the 
number of voids and the representative total 
volume, deduced from the micromechanics of 
a spherical defect.

Reaction curves and damage evolution
This item presents the numerical results for the 
notched specimens with R = 10 mm and R = 6 mm 
manufactured with the AA6101-T4 alloy and the 
results of the notched specimens manufactured 
with annealed AISI 4340 alloy with R = 10 mm, 
R = 6 mm, and R = 4 mm.

It is noteworthy that in a region of high triaxiality 

η ≥
1
3

⎛

⎝
⎜

⎞

⎠
⎟,  the increase in specimen notch severity 

and the radius reduction result in an increase in the 
triaxiality ratio. The initial triaxiality ratio values 
are shown in Table 2.

Based on the parameters of the materials obtained 
previously, for the AA6101-T4 alloy, the notched 
specimens were simulated, subjected to tensile 
force and the damage evolution laws proposed by 
Lemaitre [5] and Gurson [20] to assess the predictive 
capacity of the models.
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Table 2. Initial triaxiality ratio values.

Alloy
Specimen 

(mm)
Initial Triaxiality 

Ratio (η0)

AA6101-T4

Smooth 0.33

R = 10 0.5

R = 6 0.6

AISI 4340

Smooth 0.33

R = 10 0.5

R = 6 0.6

R = 4 0.7

Figure 11 shows the reaction curve, damage evolution 
at the critical node, and damage contour for the 
cylindrical notched specimen with R = 10 mm 
(AA6101-T4). The simulations were carried out 
until the models reached the critical damage values. 
Thus, the experimentally observed displacements 
are compared with the numerically calculated ones, 
the location of the maximum damage value (critical 
node) along the boundary of the finite element mesh.

It can be seen that the Lemaitre model [5] predicted 
the displacement required for fracture onset, more 
significant than the experimentally measured value, 
which shows that the model had an optimistic 

behavior when the ductile fracture began. Gurson’s 
model [20] predicted the numerically calculated 
displacement for fracture onset, lower than the 
experimentally measured value, which shows that 
the model had a conservative predictive capacity 
for fracture onset. As for the location of the critical 
node, that is, the node with the maximum damage, 
both models indicated that the beginning of the 
fracture occurs in the center of the specimen, which 
is in agreement with the experimental observations.

Figure 12 shows the behavior for the notched 
specimen with R = 6 mm (AA6101-T4). Again, 
the Gurson model [20] presented a behavior closer 
to the real one, given the comparison between the 
numerically calculated and the experimentally 
observed displacements. In this case, also, both 
models could indicate the center of the specimen 
as the starting point of the fracture, compatible with 
the experimental observations.

It is also possible to highlight the difference between 
the reaction force levels calculated by the models 
and the levels observed experimentally. Both models 
calculated reaction force levels smaller than the 
experimental levels. This behavior is typical of 
models based on the von Mises yield function, 

Figure 10. Isotropic hardening curves for AA6101-T4 and AISI 4340 
alloys, regarding Lemaitre and Gurson models.
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Figure 11. Comparison of experimental and numerical 
data for AA6101-T4 alloy and cylindrical 
notched R = 10 mm. a) Force versus 
displacements curve and b)  damage 
evolution at fracture.

Figure 12. Comparison of experimental and numerical 
data for AA6101-T4 alloy and cylindrical 
notched R = 6 mm. a) Force versus 
displacements curve and b)  damage 
evolution at fracture.

where the triaxiality ratio or the hydrostatic pressure 
effect is neglected in determining the material’s 
plastic flow law.

For the annealed AISI 4340 alloy, the notched 
specimens with radii of 10, 6, and 4 mm were 
simulated. For the annealed AISI 4340 alloy, the 
notched specimens with 10, 6, and 4 mm radii 
were simulated. Figure 13 shows the results for the 
specimen with R = 10 mm. Better performance of 
Gurson’s model [20] concerning the prediction of 
the correct displacement for the fracture can again 
be observed. Lemaitre’s model [5] was extremely 
optimistic, calculating a displacement for the fracture 
of about 30% greater than that observed through the 
experimental data. The location of the critical node, 
for both models, approached the starting point of 
the ductile fracture, experimentally verified.

Figure 14 presents the results for the notched 
specimens with R = 6 mm. The predictive ability of 
the Gurson model [20] was again more significant 
than the predictive capacity of the Lemaitre model [5]. 
It is important to highlight that for both simulations, 
the calculated reaction force levels were very close 

Figure 13. Comparison of experimental and numerical 
data for AISI 4340 alloy and cylindrical 
notched R = 10 mm. a) Force versus 
displacements curve and b) damage 
evolution at fracture.
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to those experimentally measured, which differs 
from the result obtained for the AA6101-T4 alloy. 
This fact can be explained by the level of ductility 
of the materials, where the models based on Mises 
have better behavior regarding the level of strength 
in less ductile materials. Observing the level of 
accumulated plastic strain at fracture calculated by 
Lemaitre and Gurson’s models, it can be seen that 
the AA6101-T4 alloy has a higher level of ductility 
than the AISI 4340 alloy (see Table 1).

For the notched specimen with R = 4 mm (Figure 15), 
it is observed that the Lemaitre model [5] behaves very 
optimistically, and the Gurson model [20] behaves 
conservatively in determining the displacement 
necessary for the beginning of the fracture. Gurson 
[20] reached the critical damage for a displacement 
at fracture less than the experimental observation, 
and Lemaitre [5] had the opposite behavior.

Evolution of accumulated plastic strain
This section shows the numerical results obtained 
for the accumulated plastic strain at fracture. The 
fracture initiation is set for the same displacement 
when the critical damage is reached.

Figure 16, Figure 17, and Figure 18 show the 
behavior of the accumulated plastic strain at fracture, 
for the smooth and notched specimens, according 
to Lemaitre [5] and Gurson [20], for AA6101-T4 
alloy. It can be observed that both models reach 
levels close to accumulated plastic strain at fracture, 
however, at different displacements, which shows 
that the rate of evolution of plastic strain for Gurson 
[20] is always higher than for Lemaitre.

Figure 19, Figure 20, Figure 21, and Figure 22 also 
show the behavior of the accumulated plastic strain 
at fracture, for the smooth and notched specimens, 
according to Lemaitre and Gurson, now for AISI 
4340 alloy. It can be observed that both models 
reach levels close to accumulated plastic strain at 
fracture, however, at different displacements, which 
shows that the rate of evolution of plastic strain for 
Gurson [20] is always higher than for Lemaitre.

Remarkably, the results were obtained for different 
displacement levels, which may indicate that even 
for materials with lower ductility, the evolution rate 
of plastic strain evolution, according to Gurson 
[20], is always greater than for materials with lower 

Figure 14. Comparison of experimental and numerical 
data for AISI 4340 alloy and cylindrical 
notched R = 6 mm. a) Force versus 
displacements curve and b) damage 
evolution at fracture.

Figure 15. Comparison of experimental and numerical 
data for AISI 4340 alloy and cylindrical 
notched R = 4 mm. a) Force versus 
displacements curve and b) damage 
evolution at fracture.
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Figure 18. Evolution of the accumulated plastic strain for AA6101-T4, 
regarding the notched specimen with R= 6 mm.

Figure 16. Evolution of the accumulated plastic strain for AA6101-T4, 
regarding the smooth specimen.

Figure 17. Evolution of the accumulated plastic strain for AA6101-T4, 
regarding the notched specimen with R=10 mm.

Figure 19. Evolution of the accumulated plastic strain for AISI4340, 
regarding the smooth specimen.
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ductility Lemaitre [5]. Figure 23 shows the behavior 
of the accumulated plastic strain at fracture, which 
can be a function of the triaxiality ratio. In this 
sense, for η ≥ 1/3, the accumulated plastic strain at 
fracture decreases with the increase of the triaxiality 
ratio. This behavior has been observed for both 
AISI 4340 and AA6101-T4 alloys. Nevertheless, 
due to ductility, the AA6101-T4 reaches levels of 
accumulated plastic strain higher than the AISI 4340.
Table  3 presents the displacement at fracture 
determined experimentally and numerically by 
Lemaitre and Gurson.

CONCLUSIONS

It can be observed that both Lemaitre and Gurson 
damage models are able to capture ductile failure 
of AA6101-T4 and AISI 4340 alloys in high levels 
of triaxiality ratio. However, based on the level of 
displacement at fracture, the Gurson model had 
the best performance. The numerical results by 
Gurson were less than 18% of the experimental 
displacement observations. The performance of the 
Lemaitre model was extremally optimist, assuming 
values around 64% far from the experimental 

Figure 20. Evolution of the accumulated plastic strain for AISI4340, 
regarding the notched specimen with R=10 mm.

Figure 22. Evolution of the accumulated plastic strain for AISI4340, 
regarding the notched specimen with R= 4 mm.

Figure 21. Evolution of the accumulated plastic strain for AISI4340, 
regarding the notched specimen with R= 6 mm.
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data. Regarding identifying the correct fracture 
locus, both models had a satisfactory performance, 
showing the center of the specimens as the site 
of fracture initiation, according to experimental 
observations. Furthermore, analyzing the localization 
of the maximum level of the accumulated plastic 
strain for the AA6101-T4, both models perform 
well and behave similarly. However, for the AISI 
4340, the Gurson model had the best performance, 
remarking on the influence of the level of ductility 
in the predictive performance of the models. In this 
case, for Lemaitre, the accumulated plastic strain 
was spraided around the region in the center of the 
specimens; meanwhile, for Gurson, the variable 
was concentrated at the geometrical center of the 
specimens.
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